

A Framework for the integration of the test bench environment and
the engine application software into Matlab/Simulink

Gerd Schlager, Valentin Kordesch, Heinz Waras

Abstract

The adoption of base engines for special applications in the environment of passen-
ger cars, trucks, boats and special purpose vehicles is an area of expertise for the
Engineering Center Steyr (ECS). In the context of the Electronic Control Unit (ECU)
calibration a target oriented, analytic approach is necessary to fulfill the requirements
under the constraints of the increasing cost pressure. To meet the increasing re-
quirements in reference to the ECU calibration, at ECS the model based calibration
toolbox (MBC) from Mathworks is used. The functionality of the MBC is expanded by
a own toolbox, the ECS MV toolbox. This toolbox includes functions for the optimiza-
tion of models with 2 stages and the interfaces to the test bench environment. With
the toolbox Simulink models can be prepared, which the interface blocks to comm u-
nicate with the test bench and the application software and additional measurement
periphery. The Simulink interface block to the test bench environment includes an
on- and offline modus and a free configurable internal and external limit monitoring.
In this paper an overview of the implementation of the interface to the test bench en-
vironment will be given. The different strategies for the calculation of the operating
point trajectories will be explained and the details of the limit value monitoring are
shown.
The functionality of the MBC and the MV toolbox in the context of calibration and op-
timization are shown on a 6 cylinder diesel engine.

1. Introduction

The calibration of the ECU has a great influence on the acceptance of an engine.
Therefore the application engineer has to analyze the ECU maps with care, to
achieve an optimal combustion process and therefore optimal performance, fuel
consumption, emission behavior and so on.
Due to the availability of new technologies, for example common rail techniques with
4 pilot and 3 post injections, the complexity increase and therefore with the knowl-
edge of expertise only sub optima can be achieved.
To meet the ascending requirements and therefore to handle the increasing number
of degrees of freedom, at ECS statistical models in combination with mathematical
optimization routines are used.

For the analysis of statistical models and the interpolation of maps different software
packages are on the market. The focus of these software packages based on the
mathematics and therefore this software packages are not equipped with interfaces
to the test bench and application software. So the data for the analysis of the models
are acquired by other software and has to be provided.

To avoid additional overhead the first step was to carry out a market analysis, to find
a possible software package which can be integrated in the test bench infrastructure

of the ECS. With the software package, DoE test planes should be automatically
executed on the test bench, measurement files for the d ifferent operation points cre-
ated and the right actions carried out if limit violations occurs. The interface should
not influence the infrastructure of the ECS, means it should be transparent to the test
bench engineer and no modifications of the test bench and the application software
should be necessary.

1.1 Market-Analysis

Up to the time of the investigations (spring 2004) there are two groups of software
products available on the market.

• Software with an interface to the test bench and the application software: AVL
Cameo

• Software without the required interfaces means statistical software: Matlab /
Model Based Calibration Toolbox (MBC), Modde, Minitab, RS1/Discover,
JMP, Statistica, I-Sight and so on.

The product AVL Cameo is a key turn solution, which includes a lot of the require-
ments defined at ECS. At ECS the test bench software Tornado from the co mpany
Krist, Seibt and CO is used. This software does not support a native interface to
Cameo. At the time of the investigations Cameo based on Matlab and therefore a
Matlab license is necessary for each Cameo PC which is an additionally drawback
because it results in additionally costs and administration costs.

The investigations show, that no software product exists which has the necessary
interfaces to Tornado and Inca and therefore to fulfill all requirements defined at
ECS. Therefore the decision was to realize the interfaces as in-house code. For the
model analysis and optimization an existing software product should be used, which
is designed as an open framework to integrate the interfaces. It would also be fine if
the chosen software can be used for code generation, to build a single executable
which can be run on every host with a appropriate runtime.

Matlab is used at ECS a fairly long time. It is a de facto standard at ECS in the con-
text of numerical simulation and optimization. With the Model Based Calibration
Toolbox (MBC) from the Mathworks a Matlab toolbox exists, which includes a lot of
methods, necessary for the effective planning of test plans and optimization of ECU
maps.
Based on this facts the focus on the further investigations is concentrated on the
MBC and Matlab/Simulink. The MBC has the following advantages:

• Open architecture (e.g. simple integration of own optimization algorithms)
• Models with different stages (local and global models)
• High model variety
• ECU structures can be modeled in Simulink and taken into consideration du r-

ing the map calibration (feature calibration)
• Template system for different model structures

There is only one disadvantage: The missing interfaces to the test bench- and appli-
cation software.

Due to the very high Matlab know-how at ECS, the excellent features of the MBC it
was decided the add the additional functions and interfaces to the MBC, respe ctively
create a new toolbox with the additional functions.

1.2 Requirements for the interfaces

For the optimization of the maps the following workflow is necessary (offline mode):

Figure 1: Offline optimization workflow

According to figure 1 it can be seen, that the primary task is the realization of the in-
terfaces between the MBC and the test bench and application software in Ma t-
lab/Simulink.

The realization should be carried out, that the following facts are given:

• The communication should occur over the network. Also the application and
the test bench software should be addressed independent from each other.

• There should be no additional configuration necessary in Inca.
• There should be no additional configuration necessary in Tornado.
• The integration of additional measurement software, for limit monitoring

should be possible (e.g. detection of turbo charger surging).
• It should be possible that all values can be saved by Matlab.
• The configuration of the whole software should be in one file and human

readable.

The connection should include an offline and online mode.
If the offline mode is used, each control variable value has to be defined explicitly.
This means the values of the local and global control values has to be defined. Th is
mode is used if there is only a basic population and therefore the maps are not well
defined.
If a good data basis is available, means only a fine tuning is necessary then the on -
line mode can be used. In the online mode, only the global control values has to be
defined, the basic control values for the local models are measured during the
execution of the test plan. This means after the operation point of a local model is
reached, the control values of the local models are measured and due to the define d
variation limits the test plan will be calculated.

The basic functions of the connection interface are defined due to the offline modus.
To fulfill the requirements of the offline modus the following criteria are necessary:

• Read and write maps into Inca with the possibility to modify several values of
a map.

• Read and manipulate the map axis from Inca.
• Read and write values from Tornado.
• Limit value monitoring (internal and external limit monitoring)
• Adaptive storage period between different operation points. A adaptive stor-

age period is necessary to minimize the execution time under the aspect of
valid measurements.

• Realization of the test bench interface due to a modular class based frame-
work in C++ (see chapter 2.2.4).

For the realization of the on-line modus additional functions are necessary:

• On-line calculation of the local test planes based on the measurements in the
global operation points.

• The possibility to switch between different local model structures. This is nec-
essary to execute a global model with different regions in it. For example with
and without pilot injection or in the case of a turbo charger with variable tur-
bine geometry to switch between models for a open and closed loop control.

This requirements implicitly leads to some assumptions for the interfaces to Tornado
and Inca. Therefore some investigations are carried out to analyze the available
software interfaces which are implemented in Tornado and Inca.

1.3 Selection of appropriate software interfaces

For the communication between Tornado and Inca normally the interface ASAP3 is
used. The interface ASAP3 is time consuming to configure in Tornado and also lim-
ited in reference to his capabilities.
Tornado has a Distributed Component Object Model (DCOM) [5] interface as univer-
sal interface. This interface allows the manipulation of each variable. Also diffe rent
functions from Tornado can be activated remote via the DCOM interface. The capa-
bility of this interface is only limited due to the load of the PC and the load on the
network, therefore this interface should be used in Simulink for the connection.

The application software Inca has the following interfaces:

• COM: The COM implementation of Inca 5.0 is not network-compatible, there-
fore no additional investigations are done.

• Matlab: The Matlab interface based on the COM interface and therefore this
interface is also not of interest.

• ASAP3: This interface can not be used from multiple clients at the same time,
means Matlab/Simulink and Tornado can not use the Interface parallel. The re-
fore the requirement to use Tornado and Inca independent from each other is
not fulfilled. Another drawback of this interface is the limited capacity.

• ASAM-MCD: According to the specification of the ASAM consortium, this in-
terface is able to handle multiple clients, means Tornado and Inca can use
this interface parallel. After the implementation of this interface, based on the
ASAM-MCD server from Inca 5.0, we have seen that the multi client capability
is not implemented yet. Due to this fact the interface could not be used. If the
multi client capability is given, it is possible to switch to this interface because
the ASAM-MCD stack is included.

Because of parallel use of Inca, means the time parallel data exchange from To r-
nado and Simulink to Inca is necessary, acc. to the defined requirements an addi-
tional software package is taken into consideration. The IncaServer from the sof t-
ware company ASE, is a powerful network extension of the Inca COM Interface. This
server is very stabile, supports multiple clients and is used at ECS since a long time.
Based on this facts it can be seen, that the IncaServer is the right choice for realizing
the test bench interface. Figure 2 shows the software architecture used in the engine
test bench environment at ECS.

R
S-

23
2

D
C

O
M

Testbench - PC

Automatisierung
K&S Tornado

IncaServer*Inca Hardware

TC
P/

IP

ES 690

Measurement PC

DCOM

NI LabView

Measurement PC
Preasure Indication

DCOM

Fuelmeter
Blow-By

Smokemeter
Opacimeter
Exhaust gas analyzer

R
S-

23
2

Inca PC

D
C

O
M

TCP/IP

Inca 5.0

IncaServer

Matlab PC

D
C

O
M

M
at

la
b

Tornado*

IncaServer*

Ethernet

* ... DCOM Client

Figure 2: Test bench software environment

2. ECS MV Toolbox

For the integration of the test bench- and application software a Matlab toolbox, the
MV toolbox was created. This toolbox has the following features:

• Simulink-block (C-Mex S-function) to communicate with Inca and Tornado
over DCOM with the capabilities descript in chapter 1.2.

• Generic Simulink-block to interface with every program which is equipped with
a DCOM interface. Therefore different programs can be integrated, for exam-
ple compiled LabView programs to monitor different physical values (turbo
surging)

• Excel Macro and GUI for the design of the xml configuration file.
• Calculation and optimization of local models over the whole operating range

with the restriction to polynomial local models.
• Matlab command functions to write and read maps and there axis into Inca

over the network
• Tornado measurement data import
• Inca dat File import acc. to the Bosch measurement data format (mdf)
• Inca dcm File import and export

2.1 Test bench integration

As described in the introduction, the connection to the test bench periphery is rea l-
ized by a Simulink block. Hence a Simulink model is necessary to communicate with
the programs used on the test bench and therefore all other available Simulink
blocks can be used means the full functionality of Simulink can be used in the model.
Furthermore it is possible to visualize the data in a scope and to save all measured
data due to a simple write block or to carry out some calculations for example to acti-
vate the external limit monitoring or to switch between different model structures.
Figure 3 shows the model to execute an online test plan, means local and global
models are used, whereas the initial values of the local models are measured during
runtime and the test planes around this initial values are calculated online. This
model includes also an initialization block for a external program over DCOM and the
appropriate block to get values from the external program. The output of this pro-
gram is used as input for the external limit violation monitoring. In this case a Lab-
View program on a PXI hardware was used for external measurement acquisition
(Figure 4). The LabView program is compiled with an ActiveX server and therefore
the program can be controlled by every other Windows PC. The model also includes
a stateflow block, which is used for the selection of the right model structure acc. to
the global operation point.

Figure 5 shows the configuration GUI of the MV interface block. In this GUI the main
configuration parameters has to be defined, means the configuration file and the d i-
mension of the block output vectors. Also different modi or options can be activated.
So in a first step the whole procedure can be simulated means the real communic a-
tion is disabled and the program runs without any DCOM activity.
The configuration of the global and local models is stored in a single human readabl e
configuration file acc. to the xml standard. To give an insight in the possibilities of the
communication interface the main sections of the configuration file are described in
more detail.

Figure 3: Simulink model for the execution of an on-line test plan

Figure 4: Additional measurement
hardware

Figure 5: Parameter for the interface

The configuration file consists of four sections:

Tornado

• Hostname of the Tornado-PC: If a Tornado variable is defined in the configura-
tion file the communication to the tornado PC will be established. Therefore
the Tornado PC is controlled by the Simulink model.

• Measurement time: If a defined operation point is reached a measurement of al l
values of interest will be carried out. This measurement is activated by the
Simulink block and executed in Tornado. All values are stored in a Tornado
measurement file and can be used for off-line optimization. During to the
measurement time no modifications of any control variables are allowed.

• Storage periode: To minimize the runtime for the execution of the hole test plan
a rapid change between the different operation points is necessary. If this
change is to fast, unwanted dynamic effects of the engine can occur. To avoid
this dynamic effects a storage period is used in front of each measurement.
The time for this storage period can be defined in relation to the necessary in-
termediate steps to change from one to another operation point.

Inca / IncaServer

• Hostname of the IncaServer-PC. Normally this is also the PC on which Inca runs.
• Inca Project settings. Normally the project is opened from the Tornado PC, if this

is the case only the Hardware has to be defined in the configuration file.

Limits

• Variable identification: Name of the variable as mentioned in Tornado or Inca.
• Software: Software package where the interface can find the variable, means

Tornado or Inca or another package if the appropriated class is included to the
interface.

• Upper and lower limit: The limit for the activation of the internal limit violation.
The limit monitoring is descript in more detail in chapter 2.2.2.

Measurement Points / Test plan settings

• Variable identification: Name of the variable or map as mentioned in Tornado or
Inca.

• Software: Software package in which the interface can find the variable, means
Tornado or Inca.

• Values: For the definition of the values, it has been taken into consideration that
there are two possibilities.

o Static map optimization– static values: <werte>1;1.1223;2.234</werte>;
In this case the values are defined acc. to the calculations of the test
plan. This is typically used for global test plans or in the off-line mode,
means also the values for the local test plans are defined offline. In this
case no modification of the values during runtime is possible.

o Dynamic map optimization due to maps or values from the Matlab
workspace. In this case the values has to be defined acc. to the follow-
ing syntax: <werte>mat:variable:steps</werte>;
If the keyword mat is used, the values of the variable has to be stored
in the Matlab workspace and therefore the values can be changed dur-
ing runtime. Also the shape of a map can be changed whereas in the
static case the map is set to the defined constant value.

• Increment: The max. step size between two values. The increment can be d e-
fined absolute or relative and the executed increment is analyzed acc. to the
chosen method means individual or uniform (see chapter 2.2.1).

• Control values: This value monitors the modification of the measurement values,
means, if an Inca map is modified and the modifications lead to a violation of
soft or hard internal limits this can be seen with this variable.

• Online section: In this section multiple local models can be defined. A local
model consists of multiple variables, whereas each variable has the same se t-
tings as the values section except that there are no physical values defined in
the <werte> tag but the appropriate dimension or vector of the local test plan
which is scaled to the interval [-1,1]. If a global operation point is reached the
actual value of the map is used as initial value for the analyis of the local test
plan based on the defined limits and the scaled vector of the test plan.

If the configuration file is created, due to the configuration excel macro or due to the
Matlab GUI the process of data acquisition is fully defined.

2.2 Details of the test bench interface

2.2.1 Step size control strategy

To change in the n dimensional input space from one state to the next state, two dif-
ferent approaches can be used. Due to the configuration parameter step size, which
can be defined for each dimension, a different number of intermediate states b e-
tween the source and the target state can occur. If the change from the state m to
the state m+1 is carried out with an individual number of steps, for each dimension,
the so called “Individuelle Schrittweitenregelung” modus is used.
If the modus “Gleichmäßige Schrittweitenregelung” is used, the same number of in-
termediate steps is used for all dimensions, means the n dimensional vector from the
state m to the state m+1 is divided by the max. number of intermediate points. In this
case only one configured step size is used, means the minimum step size in relation
to the distance between the state m and m+1 in one dimension. Therefore with this
method, the minimal geometrical vector between two states in an m dimensional
space is used.
The time performance of both methods are identical, because in both cases the ne c-
essary time between both states depends on the dimension k, for which the step size
/ distance quotient will be the minima.
Normally the more intuitive method “Gleichmäßige Schrittweitenregelung” is used.
The method “Individuelle Schrittweitenregelung” has shown some advantages in the
range of the full load curve because in this region limit violations occur very often.
With the method “Individuelle Schrittweitenregelung” and the right choice of the dif-
ferent step sizes, critical values can be influenced.

2.2.2 Limit violations

The possibility to monitor defined values for critical limits and set the appropriate ac-
tions is one of the necessary prerequisite to realize a full automatic test bench opera-
tion. Therefore the limit violation monitoring is one of the core component of the
Simulink test bench interface.
To achieve a very flexible system, the limit violation monitoring is realized as external
and internal limit monitoring.

Internal limit monitoring

The internal limit monitoring is integrated in the Simulink function block and therefore
all variables and there appropriate limits are defined in the configuration file. The va l-
ues are elected from Tornado or/and Inca and rated acc. to there limits.
If no limit is reached, the change from the state m to the state m+1 is carried out acc.
to the calculated intermediate state vector (Figure 6, left). To minimize the time, nec-
essary for the test bench run, the states are executed in the same order as defined
in the configuration file, means no reference state is used. If the state order in the
configuration file is defined with care, limit violations can be avoided, because the
dynamic of the system can be influenced due to a good choice of the state vectors.
If a limit is reached, this limit violation is detected from the system in the next reading
values sample time (typically 0.2 seconds) and the direction of the change of state is
inverted instantaneous (Figure 6, middle). This means the values of the last interme-
diate state are written to Tornado or/and Inca. The number of intermediate states
which are used in reverse order, depends on the time length of the limit violation. If
the limit violation occurs only short with high dynamic (e.g. indicated peak pressure
limit violation due to variation of main injection angle) normally the first intermediate
state is used to achieve a state without limit violation. If the response dynamic of the
monitored value is very slow (e.g. temperatures) it is possible, that no stabile state
can be reached with the intermediate values from m+1 to m and so also the interm e-
diate states between the state m to m-1 are taken into consideration. If the limit viola-
tion can not be handled in a defined time duration, the Simulink block activa tes the
idle state for the engine. If the intermediate state vector is executed reverse and a
stabile state is reached a measurement will be carried out. Therefore the values of
this measurement describes a state without any limit violations. Based on this stabile
measurement point, the vector of the intermediate points to the state m+2 is calc u-
lated and executed. To avoid to go to the point m, the time for the execution of the
test plan will be minimized. This is important especially if global test plans are carried
out, which has more then 500 measurement points.

Tornado Measurement
Boundary Operationpoints

Limit violation

∆n

∆M

1st limit violation

2nd limit violation

No limit is reached One limit is reached Tow limit violations in series

m m m

m+1 m+1 m+1

m+2 m+2 m+2

Figure 6: Trajectories of the input space

If limit violations occur on two successive trajectories, that means two target states
could not be reached successive, the last known stabile state m will be used (Figure
6, right). If the state m is reached the intermediate state vector between m and m+2
are calculated and therefore a new trajectory will be used. If the state m+2 could not

be reached with the new trajectory, the limit violation is now handled as the first limit
violation (Figure 6, middle) and therefore the same rules are used as described be-
fore.

External limit monitoring

Due to the input external limit violation (Figure 5) external values, that means values
which are not acquired from the Simulink interface block can be monitored and ther e-
fore additional data acquisition software can be used. If the input of the external limit
violation is set to one, the rules of the internal limit violation are executed, means the
procedure described in the chapter before are carried out.
For example the external limit violation monitoring can be used to monitor turbo
charger surging effects. Therefore a LabView program is created, which was com-
piled with a build in DCOM server and therefore the program can be remote con-
trolled. The LabView program measures the pressure in front of the compressor and
carries out an analysis. The result of this pressure analysis is a flag which represents
the status of the turbo charger means surging or not. A Simulink m-function reads
this flag from the LabView program over DCOM and writes to the external limit viola-
tion input. If the flag has the value 1, the internal limit violation is activated and there-
fore the last stabile state will be reached. So the optimization of the maps for a VTG
turbo charger can be carried out automatically.

The mechanism described above are valid for the execution of local and global test
plans.

2.2.3 Time schedule

The time scheduling of test bench interface is also a core component with a strong
interaction with the methods for handling limit violations. To fulfill the requirements,
means different sample times for reading and writing values, and to handle meas-
urements and limit violations four parallel threads has to be used. Figure 7 shows a
task with mixed threads, because time triggered and event based time slices are
necessary.
Acc. to the common approach for simple scheduling algorithm for periodic tasks (rate
monotonic scheduling), the thread with the highest frequency has the highest priority.
Therefore the thread for reading values, which runs with the defined sample time,
has the highest priority and can not be interrupted from another thread (non preem p-
tive).

t

t

t

Targetvalue reached
state m

t

Measurement thread (typically 0.2 sec)

Thread for variable modification (typically 4 sec)

Thread to reache stationary conditions

removed

Duration depends on the number of steps to reach the target point

Thread for measurements

Time triggert

Event based

no
n

pr
ee

m
pt

iv
e

pr
ee

m
pt

iv
e

no
n

pr
ee

m
pt

iv
e

pr
ee

m
pt

iv
e

Figure 7: Time scheduling of the test bench interface

The value transfer from the Simulink block to Tornado or Inca is also managed in a
periodic thread. This thread is preemptiv, because it can be interrupted and sus-
pended from the measurement thread which is necessary to realize a storage period
to achieve stabile conditions and to carry out a steady state measurement. This
means the transition from the state m-1 to the state m, the intermediate states or
there values are written periodically and if the last state of the intermediate vector is
reached, which is also the target state m, the activation of the storage period is car-
ried out. The storage period is only interrupted due to the measurement task, which
is necessary to detect limit violations. After the duration of the storage period elapsed
the measurement method of Tornado will be activated. After the measur ement the
new intermediate state vector to go from state m to state m+1 is calculated and exe-
cuted. Figure 7 shows the described time scheduling.
Figure 8 shows the time behavior, in the case of a limit violation with very slow dy-
namic, because the limit violation occurs during the storage period. After the state m
was reached, the flag for the storage period was activated and therefore the variable
modification thread was suspended. If a limit violation occurs during the storage pe-
riod, the storage period will be interrupted and the last values of the intermediate
vector are written to Tornado or/and Inca instantaneously. As long as the limit viola-
tion is active the values of the intermediate vector from state m to state m-1 are exe-
cuted with the sampling time of the write thread. If the limit violation is deactivated
this is identified in the next read sampling time and therefore the storage period is
activated and the write thread will be suspended. After the duration of the sto rage
period is elapsed, the measurement is activated and the new intermediate state ve c-
tor calculated.

t

t

t

Limit value monitoring (temperature, pressure, ...)

Measurement thread (0.2 sec)

Limit reached
no

n
pr

ee
m

pt
iv

e
pr

ee
m

pt
iv

e

Storage periodStorage period interrrupted

Thread for variable modification

Tornado measurement period

suspendedm

Thread to reache stationary conditions

Thread for measurements

Figure 8: Time behavior in the case of a limit violation

The timing is handled by the system clock of the operation system, means no real
time kernel will be used, so the application can run without any modifications on a
normal Windows PC with Matlab/Simulink installed.
Therefore the Windows scheduler is used and only soft real time can be achieved.
Because of the use of DCOM and no real time interface for the network communica-
tion also an additional time delay between the systems are accepted [8]. This means
a time based analysis of the data acquired in Matlab/Simulink, for example a FFT, is
not valid. If a dynamic data acquisition in Matlab is necessary, hard real time acc. to
the specified sample time is necessary. In this case the model can be build with the
Real Time Workspace or the XPC Target Toolbox for a appropriate hardware to fulfill
the requirements in time.

2.2.4 Software - Implementation

The test bench interface was implemented as C++ Level 2 C-Mex S-function, to
compile the dynamic link library for non real time and real time use. Figure 9 shows
the software design of the implementation. There is one main class which handles
the limit violation and the classes for the local and global models. The local model
class are inherited from the global model class and extended at the possibility to ca l-
culate local test planes. The interaction due to the test bench and application soft-
ware is managed by an abstraction layer, therefore additional software components
can be included in future. Due to the class based approach maintenance and e x-
pandability exists.

C-Mex S-function dll

Abstraction Layer

Testbench Interface

Limit Monitoring / Model selection

Application-SW Interface

Local Model ClassGlobal Model Class

Figure 9: Software design

3. Applications

As example for the use of the MV Toolbox, the optimization of a 6 cylinder common -
rail DI engine with a waste-gate turbo charger will be shown. The engine is equipped
with a Bosch EDC 16 ECU. The basic maps of the ECU permits a stabile operation
of the engine, but there is an optimization potential, especially in the context of fuel
consumption and emission.

3.1 Calibration of the fuel quantity map

As an example for a global calibration, means a calibration over the hole range of
operation points, the optimization of the torque-fuel quantity map will be shown.
This map is necessary for the right assignment of the brake torque and the fuel
quantity. Because the most ECU maps are in relation to the engine speed and the
fuel quantity the fuel quantity map is very important, because each error in this map
leads to an offset in all other depending maps.

CoEng_trqInr

n

q

Md

CoEng_trqInr

n

q

CoEng_trq

-

MdDIFF

Testbench

ECU

RBF - Network

Cubic - Model

Figure 10: Model for the fuel quantity map calcu-

lation

Figure 11: Model structure

The quality of the map can be judged due to the brake torque measured on the test
bench and the calculated brake torque in the ECU. If the map is correct both torques
are identically.
The input variables of the map are the inner torque and the engine speed. The di-
mension of the map is 16x16, means the inner torque range and also the engine
speed is divided in 16 sections and therefore 256 supporting points are defined.
The inner torque and the brake torque (CoEng_trq) differs due to the friction torque.
The shape of this interrelation is well known and therefore this interrelation is mod-
eled with a cubic model.
Ideally the measured torque Md must have the same model structure as the calc u-
lated brake torque form the ECU (CoEng_trq). Depending on the fuel quantity,
means to much or to less fuel is injected, the torque Md and CoEng_trq differs.
Therefore the measured torque Md contains implicit the errors in the fuel quantity
map and therefore the model for the torque Md has to describe local errors very well.
Acc. to this requirement hybrid radial basis functions are used. Figure 10 shows the
input and output variables for the model. The model structure used in CAGE can be
seen in figure 11.
Due to the necessary accuracy for the mapping of local torque errors, typically 70 to
80 measurement points are used for this optimization analysis.
Figure 12 shows the torque differences before and after the optimization for 70
measurement points. The figure shows, that due to the optimization a dramatically
reduction of the torque can be obtained. The result of the optimization, the fuel qua n-
tity map shows figure 13.
For this optimization no modifications in the application software Inca are necessary,
because only the operating points are changed. Due to the functionality of the tool-
box at this stage the knowledge of the full load curve is not necessary, because the
toolbox can be used to find the full load curve acc. to the defined limits. Means if a
operating point can not be reached, because a limit violation occurs (e.g. pmax – max.
cylinder pressure, T30 turbine inlet gas temperature) a measurement on the last sta-
bile point will be carried out and this point will be used as point of the full load curve.

Figure 12: Torque differences

Figure 13: Optimized fuel quantity map

The expenditure of time for this optimization, under the assumption of the knowledge
of the full load curve is about 3.5 hours for the calculation of the test plan, the execu-
tion of the test plan and the analysis of the new map. If the full load curve is not
know, due to the iterative process to find the limits the expenditure of time can be
expanded.

3.2 Emission and fuel consumption optimization – use of local and global
models

The following example shows the functionality of the test bench interface in the
online mode. In this case the emission and fuel consumption has to be reduced. E s-
pecially the NOx emissions and also the fuel quantity has to be reduced under the
premise that the particulates will increase, but also fulfill the limits. Also the limits for
the max. pressure pmax and the limits for different temperatures, especially the tur-
bine inlet temperature T30 should not be violated, to avoid component damage.
For the optimization local and global models are used. Normally global models are
used to analyze the parameters of the local models for the hole operating range of
an engine. This means global models for the values of interest, in this case NOx, HC,
CO, FSN, pmax, T30, and so on are analyzed, on the basis of the local models. This
means the local model parameters are interpolated due to a global model. Ther efore
the uncertainly of the local model will be expanded by the uncertainly of the global
model. Based on the global model the ECU map will be analyzed. If this procedure is
used there is also the problem that it can occur that the local model structure is not
valid over the hole operating range because different functions which can be
switched off or on, e.g. pilot injection.
Our goal are optimized maps to archive the target values, means we are not inte r-
ested in the global models of the values. We use the results of the optimized local
models as supporting points of the maps. This support ing points are used as inputs
for the global models, which are used to make models for the ECU maps. Therefore
we use one stage models from the MBC to calculate maps based on the outputs of
local optimized models.

For this example the following variables are used as input parameters for the local
models:

• Time between pilot and main injection
• Quantity for pilot injection
• Main injection angle
• Rail pressure

To analyze the maps over the full operating range, based on the optimization results
of the local models, global models are used. Therefore the global variables describes
the operation points and therefore the variables

• engine speed and
• engine brake torque

are used as input variable for the global models.

The maps for the rail pressure and the main injection angle are active over the hole
operation range. Because the pilot injection is only active at lower speed, different
models has to be taken into consideration. Acc. to figure 14 four model structures
are necessary to describe the change between the operating points with and without
pilot injection in the right manner.
In range 1 (model 1) all four parameters of the local models can be varied parallel. In
range 2 the pilot injection is deactivated, means only the parameters main injection
angle and rail pressure can be varied. Between range 1 and 2 a hysteresis appears
and therefore the functionality depends on the direction means from lower to higher

speed or vice versa. If we change from range 2 into the hysteresis the pilot injection
is inactive and therefore only the main injection angle and the rail pressure are fac-
tors and therefore model 3 is active. In the other case, means from range 1 in the
hystersis theoretically all 4 factors are active. Theoretically, because it makes no
sense to use all four factors, if there is no possibility to chose other maps for the rail
pressure and main injection angle, if the pilot injection is active. Normally model 3,
which includes the parameters pilot injection quantity and timing, is optimized based
on the results of the optimization with model 4.

Speed

To
rq

ue

1

2

3

4

Hysteresis

Figure 14: Pilot injection operation range

For the optimization the following model order was used:

2 à 3 à 1 à 4
During the data acquisition for model 1, the optimization of the local model 3 is car-
ried out, because for the data acquisition of model 4 the optimized maps for rail
pressure and main injection angle are used. This means the models 2, 3 and 1 can
be run at once in online mode. For the data acquisition of model 4 a off -line optimiza-
tion is necessary.

Data acquisition in online mode

The online mode can be used, if the available ECU maps leads to a stabile operation
of the engine. To use the online mode a global test plan is necessary. This global
test plan was calculated on the basis of the known full load curve with the MBC. Also
two different local test plans, with two and four factors are calculated with the MBC
scaled to [-1, 1] and exported. This means the variations of the values from the local
test plans are carried out during run time. The values of the local test plans, based
on the measurement value from the original map in the used operation point and the
defined variation limits, which can be defined as a function of the operation point. In
this case ±10% from the measured value for all operation points and variables are
used. The data flow can be seen in figure 15.

Definition of local Variables and there variation limits
Local test plan analysis
Scale test plan to [-1, 1]

Definition of global Variables
Global test plan analysis

Offline

Create XML configuration file

Online

Calculate local models

Offline

Read basic maps from INCA

Goto global operation point

Read actual local variables

Calculate local test plan

Execute local test plan due to the modification of the maps

Write basic maps to INCA

Goto the next global operation point

Optimize the local models acc. to the defined targets

Build global models for the optimized variables

Figure 15: Online mode data flow

Figure 16 shows the output of the index scope of the data acquisition model (Figure
3). The measurement index describes the index of the state in the state vector,
therefore this index also describes the number of the measurement point in the to r-
nado measurement file. The measurement status flag, shows the actual status of the
measurement. The following values are valid for this flag:

• 0: If the measurement status value is 0, there is a state change from the state
m to m+1 acc. to the chosen step size control strategy and the defined step
size. Between state m and m+1 n intermediate states are used. The a ctual
position in the intermediate state vector is given by the intermediate condition
number (Figure 17).

• 1: If the measurement status value is 1 a target state is reached and therefore
no variables are changed and the storage period starts. The duration of the
storage period depends on the number of necessary intermediate states.
There is a change, if the intermediate state vector has more than 10 ele-
ments, in the duration of the storage period.

• 2: If the value is 2, a Tornado measurement is in progress and therefore the
duration describes the necessary measurement time to acquire all values
means smoke, fuel consumption and so on.

Figure 16: Status flags

Figure 17: Intermediate states

The limit violation flag changed his state if a limit violation occurs. If there is no limit
violation the value is 0.5, if a limit is reached this value is 1.5 (Figure 19).

Limit violation

For this optimization operating points on the full load curve are used. Due to the
variation of the main injection angle the max. cylinder pressure violates his limit.
Figure 18 shows the maximum cylinder pressure and the chosen limit. The indicated
pressure is measured with a LabView program, with a build in DCOM server, so the
max. pressure can be read over the network from the Simulink block and also from
Tornado.

Figure 18: Peak pressure monitoring

Figure 19: Limit violation

As it can be seen on figure 19 the limit violation occurs not in the transition between
two defined states, means in the range of the intermediate state vector, but in the
storage period because the measurement status flag has the value 1. If a limit viol a-
tion occurs during the storage period, the storage period is interrupted and the last
stabile point will be used. In this case the values of the last state from the intermedi-
ate vector are written to Inca and Tornado. After the state change the limit violation is
disabled and the storage period starts again. Figure 19 shows that after the interrupt
of the storage period the new storage period starts and has a duration acc. to the

defined values in the configuration file. After the storage period a Tornado measure-
ment will be carried out and therefore the measurement status flag goes to 2.

After the data acquisition the local models are calculated. For the local models mult i-
ple, polynomial models of the following form are used:

.......
1 1

2

1 1
0 ++++= ∑ ∑∑∑

= =

<

= =

k

i

k

i
iii

ji

k

i

k

j
jiijii xaxxaxaay

44 344 21

The variables xi are the measurement data and the factors a are the regression coef-
ficient. Because the factors a are linear in this model this factors can be analyzed by
a simple matrix calculation. For the analysis of models of this form a Matlab class
was created in the MV Toolbox to analyze the local models and also to optimize this
models acc. to the different target functions over the full operation range under as-
sumption of the measurement files. For this class it is only necessary to define the
measurement files, the model order and the weights for the target fun ction.
The analysis for this example, means the calculation and optimization of 5 local
models for 22 operating points with 4 input variables and 8 operating points with 2
input variables takes less than 1 minute (laptop with 1.6 GHz, 512 MB Ram)!
Figure 20 shows the graphical result of one local model.

Figure 20: Model quality

Figure 21: Optimization results

Optimization of local models with hybrid genetic algorithm

To achieve optimal maps for the ECU the local model has to be optimized for differ-
ent target criteria. All variables are varied in an range of 10%. Because the models
are polynomial, they are only valid in the variation range and therefore the optimiza-
tion of the target functions should be carried out in this range. Means a optimization
function is defined and with the chosen algorithm this function is optimized acc. to
the defined criteria in the variation range.

The targets are:

Target Weighting
NOx à Min 1
be à Min 2

FSN à Min 0.5

This targets should be reached under the following constraints:
pmax < pLimit
T30 < TLimit

Based on the target criteria a function of goodness was defined. This function of
goodness has to be minimized by an optimization algorithm. To minimize the function
an algorithm with two stages is used. The first stage is an genetic algorithm (GA) [6]
to find the global minimum in the high dimensional input space. In general the solu-
tion of the genetic algorithm is only in the vicinity of the real global minimum and
therefore in a second stage a gradient based algorithm is used to find the real min-
ima. So the output vector of the GA is used as input vector for the gradient based
algorithm [7] and therefore it is granted that the values for the global minima are
used. Figure 21 shows the results of the optimization. The range [-1,1] is scaled to
the variation bandwidth of 10%. For the measured values the range [-1,1] represents
the minimal and maximal value which results from the variations. In this case the fuel
consumption and also the FSN can be decreased to the minima, whereas the NOx
emissions are marginally over the average of all measurements.

Map analysis based on the results of the local model optimization

Based on the results of the local optimized models the maps for the ECU are ana-
lyzed with the MBC.

Figure 22: One stage model for map analysis

Figure 23: Pilot injection timing

The MBC is normally used to set up two stage models and perform the map analysis
with this model. Because we are only interested in optimized maps, we use the MBC
to analyze one stage models for the interpolation of the maps based on the suppor t-
ing points of the local models. For the optimization we use hybrid RBF networks, be-
cause this kind of models has shown very good results. Figure 22 shows a one stage
model for the model of the maps to analyze. Figure 23 shows the result of the one
stage MBC model, a map for the timing of the pilot injection which can be written to
Inca by the functions of the MV Toolbox.
With the methods described in this chapter all critical values are below there limits
and all targets are reached. Also additional improvements in respect to the emissions
are reached.

The expenditure of time for the data acquisition, for 22 operation points with 4 factors
and therefore with 50 measurements per local model and 8 operating points with 2
factors and 16 measurements per local model was approximately 28 hours.

4. Summery

The MV toolbox, and especially his core component, the interface to the test bench -
and to the application software is presented. Different possibilities to interface with
the test bench software Tornado from the company Kristl, Seib t & CO and the appli-
cation software INCA from ETAS are shown. The core components for the auto-
mated execution of test planes are discussed in detail. This means if limit values are
under- or over-shot the right action has to be carried out. The implementation shows
how this limit violations can be handled under the aspect to minimize the running
time on the test bench.
The functionality of the toolbox is shown by the optimization of the specific fuel con-
sumption under the aspect to fulfill the emission requirements. This optimization is
done on a 6 cylinder diesel engine equipped with common rail technique and a
waste-gate turbocharger.

5. Outlook

The MV Toolbox was up to now used for different projects with great success. The
systematic approach leads to very good results in a fraction of time compared to a
conventional optimization.
To improve the quality of the ECU calibration and to minimize the time for the data
acquisition the following topics are in progress:

• Gradient based algorithm to predict limit violations during runtime faster,
means the development of an estimator for limit violations to minimize the
measurement runtime.

• Optimization of polynomial models during runtime to estimate the model qua l-
ity and therefore to decide if additional measurements are necessary during
runtime.

• Algorithm for the partition of the map axis to take the topology of the maps
more into consideration.

5. References

[1] The Mathworks: The Matlab Programming Language
[2] The Mathworks: Model Based Calibration Toolbox
[3] B. Klein: Versuchsplanung – DoE, Oldenburg Verlag
[4] Douglas C. Montgomery: Design and Analysis of Experiments, Wiley
[5] Tanenbaum, Steen: Verteilte Systeme, Pearson Studium
[6] Chris Houck, Jeff Joines, Mike Kay: A Genetic Algorithm for Function Optimi-

zation: A Matlab Implementation; NCSU-IE TR 95-09, 1995
[7] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization, London, Aca-

demic Press, 1981
[8] Jeffry Richter: Windows: Programmierung fü r Experten, Microsoft Press

