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Abstract 
 
The adoption of base engines for special applications in the environment of passen-
ger cars, trucks, boats and special purpose vehicles is an area of expertise for the 
Engineering Center Steyr (ECS). In the context of the Electronic Control Unit (ECU) 
calibration a target oriented, analytic approach is necessary to fulfill the requirements 
under the constraints of the increasing cost pressure. To meet the increasing re-
quirements in reference to the ECU calibration, at ECS the model based calibration 
toolbox (MBC) from Mathworks is used. The functionality of the MBC is expanded by 
a own toolbox, the ECS MV toolbox. This toolbox includes functions for the optimiza-
tion of models with 2 stages and the interfaces to the test bench environment. With 
the toolbox Simulink models can be prepared, which the interface blocks to comm u-
nicate with the test bench and the application software and additional measurement 
periphery. The Simulink interface block to the test bench environment includes an 
on- and offline modus and a free configurable internal and external limit monitoring.  
In this paper an overview of the implementation of the interface to the test bench en-
vironment will be given. The different strategies for the calculation of the operating 
point trajectories will be explained and the details of the limit value monitoring are 
shown.  
The functionality of the MBC and the MV toolbox in the context of calibration and op-
timization are shown on a 6 cylinder diesel engine. 

1. Introduction 
 
The calibration of the ECU has a great influence on the acceptance of an engine. 
Therefore the application engineer has to analyze the ECU maps with care, to 
achieve an optimal combustion process and therefore optimal performance, fuel 
consumption, emission behavior and so on.  
Due to the availability of new technologies, for example common rail techniques with 
4 pilot and 3 post injections, the complexity increase and therefore with the knowl-
edge of expertise only sub optima can be achieved.  
To meet the ascending requirements and therefore to handle the increasing number 
of degrees of freedom, at ECS statistical models in combination with mathematical 
optimization routines are used.  
 
For the analysis of statistical models and the interpolation of maps different software 
packages are on the market. The focus of these software packages based on the 
mathematics and therefore this software packages are not equipped with interfaces 
to the test bench and application software. So the data for the analysis of the models 
are acquired by other software and has to be provided.  
 
To avoid additional overhead the first step was to carry out a market analysis, to find 
a possible software package which can be integrated in the test bench infrastructure 



 

 

of the ECS. With the software package, DoE test planes should be automatically 
executed on the test bench, measurement files for the d ifferent operation points cre-
ated and the right actions carried out if limit violations occurs. The interface should 
not influence the infrastructure of the ECS, means it should be transparent to the test 
bench engineer and no modifications of the test bench and the application software 
should be necessary. 
 
 
1.1 Market-Analysis  
 
Up to the time of the investigations (spring 2004) there are two groups of software 
products available on the market. 

• Software with an interface to the test bench and the application software: AVL 
Cameo 

• Software without the required interfaces means statistical software: Matlab / 
Model Based Calibration Toolbox (MBC), Modde, Minitab, RS1/Discover, 
JMP, Statistica, I-Sight and so on. 

 
The product AVL Cameo is a key turn solution, which includes a lot of the require-
ments defined at ECS. At ECS the test bench software Tornado from the co mpany 
Krist, Seibt and CO is used. This software does not support a native interface to 
Cameo. At the time of the investigations Cameo based on Matlab and therefore a 
Matlab license is necessary for each Cameo PC which is an additionally drawback 
because it results in additionally costs and administration costs.  
 
The investigations show, that no software product exists which has the necessary 
interfaces to Tornado and Inca and therefore to fulfill all requirements defined at 
ECS. Therefore the decision was to realize the interfaces as in-house code. For the 
model analysis and optimization an existing software product should be used, which 
is designed as an open framework to integrate the interfaces. It would also be fine if 
the chosen software can be used for code generation, to build a single executable 
which can be run on every host with a appropriate runtime.  
 
Matlab is used at ECS a fairly long time. It is a de facto standard at ECS in the con-
text of numerical simulation and optimization. With the Model Based Calibration 
Toolbox (MBC) from the Mathworks a Matlab toolbox exists, which includes a lot of 
methods, necessary for the effective planning of test plans and optimization of ECU 
maps. 
Based on this facts the focus on the further investigations is concentrated on the 
MBC and Matlab/Simulink. The MBC has the following advantages: 

• Open architecture (e.g. simple integration of own optimization algorithms) 
• Models with different stages (local and global models) 
• High model variety 
• ECU structures can be modeled in Simulink and taken into consideration du r-

ing the map calibration (feature calibration) 
• Template system for different model structures 

   
There is only one disadvantage: The missing interfaces to the test bench- and appli-
cation software. 
 



 

 

Due to the very high Matlab know-how at ECS, the excellent features of the MBC it 
was decided the add the additional functions and interfaces to the MBC, respe ctively 
create a new toolbox with the additional functions.  
 
 
1.2 Requirements for the interfaces 
 
For the optimization of the maps the following workflow is necessary (offline mode):  
 

 
Figure 1: Offline optimization workflow 

 
According to figure 1 it can be seen, that the primary task is the realization of the in-
terfaces between the MBC and the test bench and application software in Ma t-
lab/Simulink. 
 
The realization should be carried out, that the following facts are given:  

• The communication should occur over the network. Also the application and 
the test bench software should be addressed independent from each other.  

• There should be no additional configuration necessary in Inca.  
• There should be no additional configuration necessary in Tornado.  
• The integration of additional measurement software, for limit monitoring 

should be possible (e.g. detection of turbo charger surging). 
• It should be possible that all values can be saved by Matlab.  
• The configuration of the whole software should be in one file and human 

readable. 
  
The connection should include an offline and online mode.  
If the offline mode is used, each control variable value has to be defined explicitly. 
This means the values of the local and global control values has to be defined. Th is 
mode is used if there is only a basic population and therefore the maps are not well 
defined. 
If a good data basis is available, means only a fine tuning is necessary then the on -
line mode can be used. In the online mode, only the global control values has to be 
defined, the basic control values for the local models are measured during the 
execution of the test plan. This means after the operation point of a local model is 
reached, the control values of the local models are measured and due to the define d 
variation limits the test plan will be calculated. 



 

 

 
The basic functions of the connection interface are defined due to the offline modus. 
To fulfill the requirements of the offline modus the following criteria are necessary:  
 

• Read and write maps into Inca with the possibility to modify several values of 
a map. 

• Read and manipulate the map axis from Inca.  
• Read and write values from Tornado. 
• Limit value monitoring (internal and external limit monitoring) 
• Adaptive storage period between different operation points. A adaptive stor-

age period is necessary to minimize the execution time under the aspect of 
valid measurements. 

• Realization of the test bench interface due to a modular class based frame-
work in C++ (see chapter 2.2.4). 

 
For the realization of the on-line modus additional functions are necessary: 

• On-line calculation of the local test planes based on the measurements in the 
global operation points. 

• The possibility to switch between different local model structures. This is nec-
essary to execute a global model with different regions in it. For example with 
and without pilot injection or in the case of a turbo charger with variable tur-
bine geometry to switch between models for a open and closed loop control.  

 
This requirements implicitly leads to some assumptions for the interfaces to Tornado 
and Inca. Therefore some investigations are carried out to analyze the available 
software interfaces which are implemented in Tornado and Inca.  
 
 
1.3 Selection of appropriate software interfaces  
 
For the communication between Tornado and Inca normally the interface ASAP3 is 
used. The interface ASAP3 is time consuming to configure in Tornado and also lim-
ited in reference to his capabilities.  
Tornado has a Distributed Component Object Model (DCOM) [5] interface as univer-
sal interface. This interface allows the manipulation of each variable. Also diffe rent 
functions from Tornado can be activated remote via the DCOM interface. The capa-
bility of this interface is only limited due to the load of the PC and the load on the 
network, therefore this interface should be used in Simulink for the connection.  
 
The application software Inca has the following interfaces: 

• COM: The COM implementation of Inca 5.0 is not network-compatible, there-
fore no additional investigations are done. 

• Matlab: The Matlab interface based on the COM interface and therefore this 
interface is also not of interest. 

• ASAP3: This interface can not be used from multiple clients at the same time, 
means Matlab/Simulink and Tornado can not use the Interface parallel. The re-
fore the requirement to use Tornado and Inca independent from each other is 
not fulfilled. Another drawback of this interface is the limited capacity.  



 

 

• ASAM-MCD: According to the specification of the ASAM consortium, this in-
terface is able to handle multiple clients, means Tornado and Inca can use 
this interface parallel. After the implementation of this interface, based on the 
ASAM-MCD server from Inca 5.0, we have seen that the multi client capability 
is not implemented yet. Due to this fact the interface could not be used. If the 
multi client capability is given, it is possible to switch to this interface because 
the ASAM-MCD stack is included. 

 
Because of parallel use of Inca, means the time parallel data exchange from To r-
nado and Simulink to Inca is necessary, acc. to the defined requirements an addi-
tional software package is taken into consideration. The IncaServer from the sof t-
ware company ASE, is a powerful network extension of the Inca COM Interface. This 
server is very stabile, supports multiple clients and is used at ECS since a long time. 
Based on this facts it can be seen, that the IncaServer is the right choice for realizing 
the test bench interface. Figure 2 shows the software architecture used in the engine 
test bench environment at ECS. 
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Figure 2: Test bench software environment 

2. ECS MV Toolbox 
 
For the integration of the test bench- and application software a Matlab toolbox, the 
MV toolbox was created. This toolbox has the following features: 

• Simulink-block (C-Mex S-function) to communicate with Inca and Tornado 
over DCOM with the capabilities descript in chapter 1.2. 



 

 

• Generic Simulink-block to interface with every program which is equipped with 
a DCOM interface. Therefore different programs can be integrated, for exam-
ple compiled LabView programs to monitor different physical values (turbo 
surging) 

• Excel Macro and GUI for the design of the xml configuration file. 
• Calculation and optimization of local models over the whole operating range 

with the restriction to polynomial local models. 
• Matlab command functions to write and read maps and there axis into Inca 

over the network 
• Tornado measurement data import 
• Inca dat File import acc. to the Bosch measurement data format (mdf)  
• Inca dcm File import and export 

 
 
2.1 Test bench integration  
 
As described in the introduction, the connection to the test bench periphery is rea l-
ized by a Simulink block. Hence a Simulink model is necessary to communicate with 
the programs used on the test bench and therefore all other available Simulink 
blocks can be used means the full functionality of Simulink can be used in the model. 
Furthermore it is possible to visualize the data in a scope and to save all measured 
data due to a simple write block or to carry out some calculations for example to acti-
vate the external limit monitoring or to switch between different model structures.   
Figure 3 shows the model to execute an online test plan, means local and global 
models are used, whereas the initial values of the local models are measured during 
runtime and the test planes around this initial values are calculated online. This 
model includes also an initialization block for a external program over DCOM and the 
appropriate block to get values from the external program. The output of this pro-
gram is used as input for the external limit violation monitoring. In this case a Lab-
View program on a PXI hardware was used for external measurement acquisition 
(Figure 4). The LabView program is compiled with an ActiveX server and therefore 
the program can be controlled by every other Windows PC. The model also includes 
a stateflow block, which is used for the selection of the right model structure acc. to 
the global operation point. 
 
Figure 5 shows the configuration GUI of the MV interface block. In this GUI the main 
configuration parameters has to be defined, means the configuration file and the d i-
mension of the block output vectors. Also different modi or  options can be activated. 
So in a first step the whole procedure can be simulated means the real communic a-
tion is disabled and the program runs without any DCOM activity.  
The configuration of the global and local models is stored in a single human readabl e 
configuration file acc. to the xml standard. To give an insight in the possibilities of the 
communication interface the main sections of the configuration file are described in 
more detail. 
 



 

 

 
Figure 3: Simulink model for the execution of an on-line test plan 

 

 

Figure 4: Additional measurement 
hardware 

 

 
Figure 5: Parameter for the interface  

The configuration file consists of four sections: 
 
Tornado 
 

• Hostname of the Tornado-PC: If a Tornado variable is defined in the configura-
tion file the communication to the tornado PC will be established. Therefore 
the Tornado PC is controlled by the Simulink model.  

• Measurement time: If a defined operation point is reached a measurement of al l 
values of interest will be carried out. This measurement is activated by the 
Simulink block and executed in Tornado. All values are stored in a Tornado 
measurement file and can be used for off-line optimization. During to the 
measurement time no modifications of any control variables are allowed. 



 

 

• Storage periode: To minimize the runtime for the execution of the hole test plan 
a rapid change between the different operation points is necessary. If this 
change is to fast, unwanted dynamic effects of the engine can occur. To avoid 
this dynamic effects a storage period is used in front of each measurement. 
The time for this storage period can be defined in relation to the necessary in-
termediate steps to change from one to another operation point.  

 
Inca / IncaServer 
 

• Hostname of the IncaServer-PC. Normally this is also the PC on which Inca runs. 
• Inca Project settings. Normally the project is opened from the Tornado PC, if this 

is the case only the Hardware has to be defined in the configuration file.  
 
Limits 
 

• Variable identification: Name of the variable as mentioned in Tornado or Inca.  
• Software: Software package where the interface can find the variable, means 

Tornado or Inca or another package if the appropriated class is included to the 
interface. 

• Upper and lower limit: The limit for the activation of the internal limit violation. 
The limit monitoring is descript in more detail in chapter 2.2.2.  

 
Measurement Points / Test plan settings 
 

• Variable identification: Name of the variable or map as mentioned in Tornado or 
Inca. 

• Software: Software package in which the interface can find the variable, means 
Tornado or Inca. 

• Values: For the definition of the values, it has been taken into consideration that 
there are two possibilities.  

o Static map optimization– static values: <werte>1;1.1223;2.234</werte>; 
In this case the values are defined acc. to the calculations of the test 
plan. This is typically used for global test plans or in the off-line mode, 
means also the values for the local test plans are defined offline. In this 
case no modification of the values during runtime is possible. 

o Dynamic map optimization due to maps or values from the Matlab 
workspace. In this case the values has to be defined acc. to the follow-
ing syntax: <werte>mat:variable:steps</werte>; 
If the keyword mat is used, the values of the variable has to be stored 
in the Matlab workspace and therefore the values can be changed dur-
ing runtime. Also the shape of a map can be changed whereas in the 
static case the map is set to the defined constant value.  

• Increment: The max. step size between two values. The increment can be d e-
fined absolute or relative and the executed increment is analyzed acc. to the 
chosen method means individual or uniform (see chapter 2.2.1).  

• Control values: This value monitors the modification of the measurement values, 
means, if an Inca map is modified and the modifications lead to a violation of 
soft or hard internal limits this can be seen with this variable.  



 

 

• Online section: In this section multiple local models can be defined. A local 
model consists of multiple variables, whereas each variable has the same se t-
tings as the values section except that there are no physical values defined in 
the <werte> tag but the appropriate dimension or vector of the local test plan 
which is scaled to the interval [-1,1]. If a global operation point is reached the 
actual value of the map is used as initial value for the analyis of the local test 
plan based on the defined limits and the scaled vector of the test plan.  

 
If the configuration file is created, due to the configuration excel macro or due to the 
Matlab GUI the process of data acquisition is fully defined.  
 
 
2.2 Details of the test bench interface  
 
2.2.1 Step size control strategy 
 
To change in the n dimensional input space from one state to the next state, two dif-
ferent approaches can be used. Due to the configuration parameter step size, which 
can be defined for each dimension, a different number of intermediate states b e-
tween the source and the target state can occur. If the change from the state m to 
the state m+1 is carried out with an individual number of steps, for each dimension, 
the so called “Individuelle Schrittweitenregelung” modus is used.  
If the modus “Gleichmäßige Schrittweitenregelung” is used, the same number of in-
termediate steps is used for all dimensions, means the n dimensional vector from the 
state m to the state m+1 is divided by the max. number of intermediate points. In this 
case only one configured step size is used, means the minimum step size in relation 
to the distance between the state m and m+1 in one dimension. Therefore with this 
method, the minimal geometrical vector between two states in an m dimensional 
space is used. 
The time performance of both methods are identical, because in both cases the ne c-
essary time between both states depends on the dimension k, for which the step size 
/ distance quotient will be the minima. 
Normally the more intuitive method “Gleichmäßige Schrittweitenregelung” is used. 
The method “Individuelle Schrittweitenregelung” has shown some advantages in the 
range of the full load curve because in this region limit violations occur very often. 
With the method “Individuelle Schrittweitenregelung” and the right choice of the dif-
ferent step sizes, critical values can be influenced. 
 
 
2.2.2 Limit violations 
 
The possibility to monitor defined values for critical limits and set the appropriate ac-
tions is one of the necessary prerequisite to realize a full automatic test bench opera-
tion. Therefore the limit violation monitoring is one of the core component of the 
Simulink test bench interface. 
To achieve a very flexible system, the limit violation monitoring is realized as external 
and internal limit monitoring.  



 

 

Internal limit monitoring 
 
The internal limit monitoring is integrated in the Simulink function block and therefore 
all variables and there appropriate limits are defined in the configuration file. The va l-
ues are elected from Tornado or/and Inca and rated acc. to there limits.  
If no limit is reached, the change from the state m to the state m+1 is carried out acc. 
to the calculated intermediate state vector (Figure 6, left). To minimize the time, nec-
essary for the test bench run, the states are executed in the same order as defined 
in the configuration file, means no reference state is used. If the state order in the 
configuration file is defined with care, limit violations can be avoided, because the 
dynamic of the system can be influenced due to a good choice of the state vectors.  
If a limit is reached, this limit violation is detected from the system in the next reading 
values sample time (typically 0.2 seconds) and the direction of the change of state is 
inverted instantaneous (Figure 6, middle). This means the values of the last interme-
diate state are written to Tornado or/and Inca. The number of intermediate states 
which are used in reverse order, depends on the time length of the limit violation. If 
the limit violation occurs only short with high dynamic (e.g. indicated peak pressure 
limit violation due to variation of main injection angle) normally the first intermediate 
state is used to achieve a state without limit violation. If the response dynamic of the 
monitored value is very slow (e.g. temperatures) it is possible, that no stabile state 
can be reached with the intermediate values from m+1 to m and so also the interm e-
diate states between the state m to m-1 are taken into consideration. If the limit viola-
tion can not be handled in a defined time duration, the Simulink block activa tes the 
idle state for the engine. If the intermediate state vector is executed reverse and a 
stabile state is reached a measurement will be carried out. Therefore the values of 
this measurement describes a state without any limit violations. Based on this  stabile 
measurement point, the vector of the intermediate points to the state m+2 is calc u-
lated and executed. To avoid to go to the point m, the time for the execution of the 
test plan will be minimized. This is important especially if global test plans are carried 
out, which has more then 500 measurement points.  
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Figure 6: Trajectories of the input space 

 
If limit violations occur on two successive trajectories, that means two target states 
could not be reached successive, the last known stabile state m will be used (Figure 
6, right). If the state m is reached the intermediate state vector between m and m+2 
are calculated and therefore a new trajectory will be used. If the state m+2 could not 



 

 

be reached with the new trajectory, the limit violation is now handled as the first limit 
violation (Figure 6, middle) and therefore the same rules are used as described be-
fore. 
 
 
External limit monitoring 
 
Due to the input external limit violation (Figure 5)  external values, that means values 
which are not acquired from the Simulink interface block can be monitored and ther e-
fore additional data acquisition software can be used. If the input of the external limit 
violation is set to one, the rules of the internal limit violation are executed, means the 
procedure described in the chapter before are carried out.  
For example the external limit violation monitoring can be used to monitor turbo 
charger surging effects. Therefore a LabView program is created, which was com-
piled with a build in DCOM server and therefore the program can be remote con-
trolled. The LabView program measures the pressure in front of the compressor and 
carries out an analysis. The result of this pressure analysis is a flag which represents 
the status of the turbo charger means surging or not. A Simulink m-function reads 
this flag from the LabView program over DCOM and writes to the external limit viola-
tion input. If the flag has the value 1, the internal limit violation is activated and there-
fore the last stabile state will be reached. So the optimization of the maps for a VTG 
turbo charger can be carried out automatically. 
 
The mechanism described above are valid for the execution of local and global test 
plans.  
 
 
2.2.3 Time schedule 
 
The time scheduling of test bench interface is also a core component with a strong 
interaction with the methods for handling limit violations. To fulfill the requirements, 
means different sample times for reading and writing values, and to handle meas-
urements and limit violations four parallel threads has to be used.  Figure 7 shows a 
task with mixed threads, because time triggered and event based time slices are 
necessary. 
Acc. to the common approach for simple scheduling algorithm for periodic tasks (rate 
monotonic scheduling), the thread with the highest frequency has the highest priority. 
Therefore the thread for reading values, which runs with the defined sample time, 
has the highest priority and can not be interrupted from another thread (non preem p-
tive). 
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Figure 7: Time scheduling of the test bench interface 

 
The value transfer from the Simulink block to Tornado or Inca is also managed in a 
periodic thread. This thread is preemptiv, because it can be interrupted and sus-
pended from the measurement thread which is necessary to realize a storage period 
to achieve stabile conditions and to carry out a steady state measurement. This 
means the transition from the state m-1 to the state m, the intermediate states or 
there values are written periodically and if the last state of the intermediate vector is 
reached, which is also the target state m, the activation of the storage period is car-
ried out. The storage period is only interrupted due to the measurement task, which 
is necessary to detect limit violations. After the duration of the storage period elapsed 
the measurement method of Tornado will be activated. After the measur ement the 
new intermediate state vector to go from state m to state m+1 is calculated and exe-
cuted. Figure 7 shows the described time scheduling. 
Figure 8 shows the time behavior, in the case of a limit violation with very slow dy-
namic, because the limit violation occurs during the storage period. After the state m 
was reached, the flag for the storage period was activated and therefore the variable 
modification thread was suspended. If a limit violation occurs during the storage pe-
riod, the storage period will be interrupted and the last values of the intermediate 
vector are written to Tornado or/and Inca instantaneously. As long as the limit viola-
tion is active the values of the intermediate vector from state m to state m-1 are exe-
cuted with the sampling time of the write thread. If the limit violation is deactivated 
this is identified in the next read sampling time and therefore the storage period is 
activated and the write thread will be suspended. After the duration of the sto rage 
period is elapsed, the measurement is activated and the new intermediate state ve c-
tor calculated. 
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Figure 8: Time behavior in the case of a limit violation 

 
The timing is handled by the system clock of the operation system, means no real 
time kernel will be used, so the application can run without any modifications on a 
normal Windows PC with Matlab/Simulink installed. 
Therefore the Windows scheduler is used and only soft real time can be achieved. 
Because of the use of DCOM and no real time interface for the network communica-
tion also an additional time delay between the systems are accepted [8]. This means 
a time based analysis of the data acquired in Matlab/Simulink, for example a FFT, is 
not valid. If a dynamic data acquisition in Matlab is necessary, hard real time acc. to 
the specified sample time is necessary. In this case the model can be build with the 
Real Time Workspace or the XPC Target Toolbox for a appropriate hardware to fulfill 
the requirements in time.  
 
 
2.2.4 Software - Implementation 
 
The test bench interface was implemented as C++ Level 2 C-Mex S-function, to 
compile the dynamic link library for non real time and real time use. Figure 9 shows 
the software design of the implementation. There is one main class which handles 
the limit violation and the classes for the local and global models. The local model 
class are inherited from the global model class and extended at the possibility to ca l-
culate local test planes. The interaction due to the test bench and application soft-
ware is managed by an abstraction layer, therefore additional software components 
can be included in future. Due to the class based approach maintenance and e x-
pandability exists.  
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Figure 9: Software design 

3. Applications 
 
As example for the use of the MV Toolbox, the optimization of a 6 cylinder common -
rail DI engine with a waste-gate turbo charger will be shown. The engine is equipped 
with a Bosch EDC 16 ECU. The basic maps of the ECU permits a stabile operation 
of the engine, but there is an optimization potential, especially in the context of fuel 
consumption and emission. 
 
 
3.1 Calibration of the fuel quantity map 
 
As an example for a global calibration, means a calibration over the hole range of 
operation points, the optimization of the torque-fuel quantity map will be shown. 
This map is necessary for the right assignment of the brake torque and the fuel 
quantity. Because the most ECU maps are in relation to the engine speed and the 
fuel quantity the fuel quantity map is very important, because each error in this map 
leads to an offset in all other depending maps. 
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Figure 10: Model for the fuel quantity map calcu-
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Figure 11: Model structure 

 
 



 

 

The quality of the map can be judged due to the brake torque measured on the test 
bench and the calculated brake torque in the ECU. If the map is correct both torques 
are identically.  
The input variables of the map are the inner torque and the engine speed. The di-
mension of the map is 16x16, means the inner torque range and also the engine 
speed is divided in 16 sections and therefore 256 supporting points are defined.  
The inner torque and the brake torque (CoEng_trq) differs due to the friction torque. 
The shape of this interrelation is well known and therefore this interrelation is mod-
eled with a cubic model.  
Ideally the measured torque Md must have the same model structure as the calc u-
lated brake torque form the ECU (CoEng_trq). Depending on the fuel quantity, 
means to much or to less fuel is injected, the torque Md and CoEng_trq differs. 
Therefore the measured torque Md contains implicit the errors in the fuel quantity 
map and therefore the model for the torque Md has to describe local errors very well. 
Acc. to this requirement hybrid radial basis functions are used. Figure 10 shows the 
input and output variables for the model. The model structure used in CAGE can be 
seen in figure 11. 
Due to the necessary accuracy for the mapping of local torque errors, typically 70 to 
80 measurement points are used for this optimization analysis.  
Figure 12 shows the torque differences before and after the optimization for 70 
measurement points. The figure shows, that due to the optimization a dramatically 
reduction of the torque can be obtained. The result of the optimization, the fuel qua n-
tity map shows figure 13. 
For this optimization no modifications in the application software Inca are necessary, 
because only the operating points are changed. Due to the functionality of the tool-
box at this stage the knowledge of the full load curve is not necessary, because the 
toolbox can be used to find the full load curve acc. to the defined limits. Means if a 
operating point can not be reached, because a limit violation occurs (e.g. pmax –  max. 
cylinder pressure, T30 turbine inlet gas temperature) a measurement on the last sta-
bile point will be carried out and this point will be used as point of the full load curve.  

 
Figure 12: Torque differences 

 
Figure 13: Optimized fuel quantity map 

 
The expenditure of time for this optimization, under the assumption of the knowledge 
of the full load curve is about 3.5 hours for the calculation of the test plan, the execu-
tion of the test plan and the analysis of the new map. If the full load curve is not 
know, due to the iterative process to find the limits the expenditure of time can be 
expanded.  



 

 

 
3.2 Emission and fuel consumption optimization –  use of local and global 
models 
 
The following example shows the functionality of the test bench interface in the 
online mode. In this case the emission and fuel consumption has to be reduced. E s-
pecially the NOx emissions and also the fuel quantity has to be reduced under the 
premise that the particulates will increase, but also fulfill the limits. Also the limits for 
the max. pressure pmax and the limits for different temperatures, especially the tur-
bine inlet temperature T30 should not be violated, to avoid component damage.       
For the optimization local and global models are used. Normally global models are 
used to analyze the parameters of the local models for the hole operating range of 
an engine. This means global models for the values of interest, in this case NOx, HC, 
CO, FSN, pmax, T30, and so on are analyzed, on the basis of the local models. This 
means the local model parameters are interpolated due to a global model. Ther efore 
the uncertainly of the local model will be expanded by the uncertainly of the global 
model. Based on the global model the ECU map will be analyzed. If this procedure is 
used there is also the problem that it can occur that the local model structure is not 
valid over the hole operating range because different functions which can be 
switched off or on, e.g. pilot injection. 
Our goal are optimized maps to archive the target values, means we are not inte r-
ested in the global models of the values. We use the results of the optimized  local 
models as supporting points of the maps. This support ing points are used as inputs 
for the global models, which are used to make models for the ECU maps. Therefore 
we use one stage models from the MBC to calculate maps based on the outputs of 
local optimized models. 
 
For this example the following variables are used as input parameters for the local 
models:  

• Time between pilot and main injection 
• Quantity for pilot injection 
• Main injection angle 
• Rail pressure 

 
To analyze the maps over the full operating range, based on the optimization results 
of the local models, global models are used. Therefore the global variables describes  
the operation points and therefore the variables  

• engine speed and 
• engine brake torque  

are used as input variable for the global models. 
 
The maps for the rail pressure and the main injection angle are active over the hole 
operation range. Because the pilot injection is only active at lower speed, different 
models has to be taken into consideration. Acc. to figure 14 four model structures 
are necessary to describe the change between the operating points with and without 
pilot injection in the right manner.   
In range 1 (model 1) all four parameters of the local models can be varied parallel. In 
range 2 the pilot injection is deactivated, means only the parameters main injection 
angle and rail pressure can be varied. Between range 1 and 2 a hysteresis appears 
and therefore the functionality depends on the direction means from lower to higher 



 

 

speed or vice versa. If we change from range 2 into the hysteresis the pilot injection 
is inactive and therefore only the main injection angle and the rail pressure are fac-
tors and therefore model 3 is active. In the other case, means from range 1 in the 
hystersis theoretically all 4 factors are active. Theoretically, because it makes no 
sense to use all four factors, if there is no possibility to chose other maps for the rail 
pressure and main injection angle, if the pilot injection is active. Normally model 3, 
which includes the parameters pilot injection quantity and timing, is optimized based 
on the results of the optimization with model 4. 
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Figure 14: Pilot injection operation range 

 
For the optimization the following model order was used: 

2 à 3 à 1 à 4 
During the data acquisition for model 1, the optimization of the local model 3 is car-
ried out, because for the data acquisition of model 4 the optimized maps for rail 
pressure and main injection angle are used. This means the models 2, 3 and 1 can 
be run at once in online mode. For the data acquisition of model 4 a off -line optimiza-
tion is necessary. 
 
 
Data acquisition in online mode 
 
The online mode can be used, if the available ECU maps leads to a stabile operation 
of the engine. To use the online mode a global test plan is necessary. This global 
test plan was calculated on the basis of the known full load curve with the MBC. Also 
two different local test plans, with two and four factors are calculated with the MBC 
scaled to [-1, 1] and exported. This means the variations of the values from the local 
test plans are carried out during run time. The values of the local test plans,  based 
on the measurement value from the original map in the used operation point and the 
defined variation limits, which can be defined as a function of the operation point. In 
this case ±10% from the measured value for all operation points and variables are 
used. The data flow can be seen in figure 15.  
 



 

 

Definition of  local Variables and there variation limits
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Scale test plan to [-1, 1]
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Build global models for the optimized variables 

 
Figure 15: Online mode data flow 

 
Figure 16 shows the output of the index scope of the data acquisition model (Figure 
3). The measurement index describes the index of the state in the state vector, 
therefore this index also describes the number of the measurement point in the to r-
nado measurement file. The measurement status flag, shows the actual status of the 
measurement. The following values are valid for this flag:  

• 0: If the measurement status value is 0, there is a state change from the state 
m to m+1 acc. to the chosen step size control strategy and the defined step 
size. Between state m and m+1 n intermediate states are used. The a ctual 
position in the intermediate state vector is given by the intermediate condition 
number (Figure 17).  

• 1: If the measurement status value is 1 a target state is reached and therefore 
no variables are changed and the storage period starts. The duration of the 
storage period depends on the number of necessary intermediate states. 
There is a change, if the intermediate state vector has more than 10 ele-
ments, in the duration of the storage period. 

• 2: If the value is 2, a Tornado measurement is in progress and therefore the 
duration describes the necessary measurement time to acquire all values 
means smoke, fuel consumption and so on.  



 

 

 
Figure 16: Status flags 

 
Figure 17: Intermediate states 

 
The limit violation flag changed his state if a limit violation occurs. If there is no limit 
violation the value is 0.5, if a limit is reached this value is 1.5 (Figure 19). 
 
 
Limit violation 
 
For this optimization operating points on the full load curve are used. Due to the 
variation of the main injection angle the max. cylinder pressure violates his limit. 
Figure 18 shows the maximum cylinder pressure and the chosen limit. The indicated 
pressure is measured with a LabView program, with a build in DCOM server, so the 
max. pressure can be read over the network from the Simulink block and also from 
Tornado. 

 
Figure 18: Peak pressure monitoring 

 
Figure 19: Limit violation 

As it can be seen on figure 19 the limit violation occurs not in the transition between 
two defined states, means in the range of the intermediate state vector, but in the 
storage period because the measurement status flag has the value 1. If a limit viol a-
tion occurs during the storage period, the storage period is interrupted and the last 
stabile point will be used. In this case the values of the last state from the intermedi-
ate vector are written to Inca and Tornado. After the state change the limit violation is 
disabled and the storage period starts again. Figure 19 shows that after the interrupt 
of the storage period the new storage period starts and has a duration acc. to the 



 

 

defined values in the configuration file. After the storage period a Tornado measure-
ment will be carried out and therefore the measurement status flag goes to 2.  
 
After the data acquisition the local models are calculated. For the local models mult i-
ple, polynomial models of the following form are used:  
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The variables xi are the measurement data and the factors a are the regression coef-
ficient. Because the factors a are linear in this model this factors can be analyzed by 
a simple matrix calculation. For the analysis of models of this form a Matlab class 
was created in the MV Toolbox to analyze the local models and also to optimize this 
models acc. to the different target functions over the full operation range under as-
sumption of the measurement files. For this class it is only necessary to define the 
measurement files, the model order and the weights for the target fun ction.  
The analysis for this example, means the calculation and optimization of 5 local 
models for 22 operating points with 4 input variables and 8 operating points with 2 
input variables takes less than 1 minute (laptop with 1.6 GHz, 512 MB Ram)!  
Figure 20 shows the graphical result of one local model. 
 

 
Figure 20: Model quality 

 
Figure 21: Optimization results 

 
Optimization of local models with hybrid genetic algorithm 
 
To achieve optimal maps for the ECU the local model has to be optimized for differ-
ent target criteria. All variables are varied in an range of 10%. Because the models 
are polynomial, they are only valid in the variation range and therefore the optimiza-
tion of the target functions should be carried out in this range. Means a optimization 
function is defined and with the chosen algorithm this function is optimized acc. to 
the defined criteria in the variation range. 
 
The targets are: 

Target Weighting 
NOx à Min 1 
be à Min 2 

FSN à Min 0.5 
 



 

 

This targets should be reached under the following constraints: 
pmax < pLimit 
T30 < TLimit 

 
Based on the target criteria a function of goodness was defined. This function of 
goodness has to be minimized by an optimization algorithm. To minimize the function 
an algorithm with two stages is used. The first stage is an genetic algorithm (GA) [6] 
to find the global minimum in the high dimensional input space. In general the solu-
tion of the genetic algorithm is only in the vicinity of the real global minimum and 
therefore in a second stage a gradient based algorithm is used to find the real min-
ima. So the output vector of the GA is used as input vector for the gradient based 
algorithm [7] and therefore it is granted that the values for the global minima are 
used. Figure 21 shows the results of the optimization. The range [-1,1] is scaled to 
the variation bandwidth of 10%. For the measured values the range [ -1,1] represents 
the minimal and maximal value which results from the variations. In this case the fuel  
consumption and also the FSN can be decreased to the minima, whereas the NOx 
emissions are marginally over the average of all measurements.  
 
 
Map analysis based on the results of the local model optimization  
 
Based on the results of the local optimized models the maps for the ECU are ana-
lyzed with the MBC.  
 

 
 

 
Figure 22: One stage model for map analysis 

 
Figure 23: Pilot injection timing 

 
The MBC is normally used to set up two stage models and perform the map analysis 
with this model. Because we are only interested in optimized maps, we use the MBC 
to analyze one stage models for the interpolation of the maps based on the suppor t-
ing points of the local models. For the optimization we use hybrid RBF networks, be-
cause this kind of models has shown very good results. Figure 22 shows a one stage 
model for the model of the maps to analyze. Figure 23 shows the result of the one 
stage MBC model, a map for the timing of the pilot injection which can be written to 
Inca by the functions of the MV Toolbox.  
With the methods described in this chapter all critical values are below there limits 
and all targets are reached. Also additional improvements in respect to the  emissions 
are reached. 



 

 

The expenditure of time for the data acquisition, for 22 operation points with 4 factors 
and therefore with 50 measurements per local model and 8 operating points with 2 
factors and 16 measurements per local model was approximately 28 hours. 

4. Summery  
 
The MV toolbox, and especially his core component, the interface to the test bench - 
and to the application software is presented. Different possibilities to interface with 
the test bench software Tornado from the company Kristl, Seib t & CO and the appli-
cation software INCA from ETAS are shown. The core components for the auto-
mated execution of test planes are discussed in detail. This means if limit values are 
under- or over-shot the right action has to be carried out. The implementation shows 
how this limit violations can be handled under the aspect to minimize the running 
time on the test bench. 
The functionality of the toolbox is shown by the optimization of the specific fuel con-
sumption under the aspect to fulfill the emission requirements. This optimization is 
done on a 6 cylinder diesel engine equipped with common rail technique and a 
waste-gate turbocharger. 

5. Outlook 
 
The MV Toolbox was up to now used for different projects with great success. The 
systematic approach leads to very good results in a fraction of time compared to a 
conventional optimization. 
To improve the quality of the ECU calibration and to minimize the time for the data 
acquisition the following topics are in progress: 

• Gradient based algorithm to predict limit violations during runtime faster, 
means the development of an estimator for limit violations to minimize the 
measurement runtime. 

• Optimization of polynomial models during runtime to estimate the model qua l-
ity and therefore to decide if additional measurements are necessary during 
runtime. 

• Algorithm for the partition of the map axis to take the topology of the maps 
more into consideration. 
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